ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Ander Gray, Andrew Davis, Edoardo Patelli
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 802-812
Technical Paper | doi.org/10.1080/15361055.2021.1895667
Articles are hosted by Taylor and Francis Online.
In this paper we perform nuclear data uncertain propagation with Total Monte Carlo, where the transport simulation is repeated for random evaluations of the data. The Oktavian Iron, Oktavian Nickel, and the Frascati Neutron Generator (FNG) neutron streaming SINBAD benchmarks were evaluated with OpenMC. Gaussian random deviates were drawn from the ENDF/B-VII.1 and TENDL-2017 libraries where the covariances were available. Uncertainty from multiple nuclides was propagated simultaneously assuming inter-nuclide independence. When the individual statistical uncertainty is negligible compared to the data uncertainty, then standard probability theory may be applied. If this is not the case and both need to be considered, we use Imprecise Probabilities (IP) to perform further analysis. We show how uncertain experimental data may be compared to uncertain simulation in the context of IP, and show how an uncertainty-based sensitivity analysis can be performed with IP.