ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
S. Meschini, M. Zucchetti, Enrico Pagliuca
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 784-790
Technical Paper | doi.org/10.1080/15361055.2021.1921461
Articles are hosted by Taylor and Francis Online.
As a first step to exploring the possibilities of D-3He plasmas, a deuterium-tritium burning plasma experiment at high field and plasma densities, which can be much closer to the required parameters than present-day experiments, is particularly attractive. Compact high-field experiments were the first to be proposed in order to achieve fusion ignition conditions based on existing technology and the known properties of high-density plasmas. In previous studies, a feasibility study of a high-field D-3He experiment of larger dimensions and higher fusion power than Ignitor, but based on Ignitor technologies, was brought to the proposed Candor fusion experiment. Unlike Ignitor, Candor would operate with values of poloidal beta around unity and the central part of the plasma column in the second stability region. The toroidal field coils are divided into two sets of coils, and the central solenoid (air core transformer) is placed between them in the inboard part. In this paper, a revised design of Candor is proposed, based on the new technologies. This tokamak is capable of reaching D-3He ignition on the basis of existing technologies and knowledge of plasma, without any optimistic extrapolation.