ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
S. Meschini, M. Zucchetti, Enrico Pagliuca
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 784-790
Technical Paper | doi.org/10.1080/15361055.2021.1921461
Articles are hosted by Taylor and Francis Online.
As a first step to exploring the possibilities of D-3He plasmas, a deuterium-tritium burning plasma experiment at high field and plasma densities, which can be much closer to the required parameters than present-day experiments, is particularly attractive. Compact high-field experiments were the first to be proposed in order to achieve fusion ignition conditions based on existing technology and the known properties of high-density plasmas. In previous studies, a feasibility study of a high-field D-3He experiment of larger dimensions and higher fusion power than Ignitor, but based on Ignitor technologies, was brought to the proposed Candor fusion experiment. Unlike Ignitor, Candor would operate with values of poloidal beta around unity and the central part of the plasma column in the second stability region. The toroidal field coils are divided into two sets of coils, and the central solenoid (air core transformer) is placed between them in the inboard part. In this paper, a revised design of Candor is proposed, based on the new technologies. This tokamak is capable of reaching D-3He ignition on the basis of existing technologies and knowledge of plasma, without any optimistic extrapolation.