ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Gaku Yamazaki, Yuta Suzuki, Takuya Goto, Takuya Nagasaka, Daisuke Nagata, Jingjie Shen, Kazuki Saito, Takashi Watanabe
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 766-772
Technical Paper | doi.org/10.1080/15361055.2021.1921462
Articles are hosted by Taylor and Francis Online.
In order to establish a molten salt blanket, the microscopic corrosion of JLF-1 steel (Fe-9Cr-2W) was investigated by comparing with its alloying elements (pure Fe, Cr, and W) and pure Ni. Impedance measurements in LiF-NaF-KF at 500°C and scanning electron microscope and transmission electron microscope observations were performed. The charge transfer resistance of JLF-1 steel was similar to that of pure Fe, three times higher than that of pure Cr, and ten times lower than that of pure W and Ni. The concentration of W in JLF-1 steel was higher near the surface than at the bulk, which also indicated the higher corrosion resistance of W than Fe and Cr. For corrosion resistance of JLF-1 steel, the degradation by 9 mass % Cr was more effective than the improvement by 2 mass % W. The dominant corrosion was the intergranular corrosion at lath boundaries, leading to lath dropout for JLF-1 steel, the intergranular corrosion along grain boundaries for pure Fe, pitting corrosion for pure Cr, and entire surface corrosion for pure W and Ni.