ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
N. W. Eidietis
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 738-744
Technical Paper | doi.org/10.1080/15361055.2021.1889919
Articles are hosted by Taylor and Francis Online.
Disruptions present a great challenge to achieving an economically viable commercial tokamak fusion reactor. Disruption handling, including prevention, mitigation, and resilient design, must be incorporated into future reactor designs at the same priority as core performance and steady-state heat flux removal. Prevention requires avoiding unstable regimes; actively stabilizing instabilities if they do appear; or, if those steps should fail, terminating the plasma-controlled rampdown. Mitigation is a last resort that utilizes massive impurity injection to reduce a damaging concentration of thermal and mechanical loads. Extremely robust disruption prevention will be of paramount importance to ensure high duty factor and capital return on the reactor investment, but the reactor environment poses significant technical challenges exceeding those in ITER. The long-term mission of a commercial reactor motivates investment in passive resilient design to survive disruptions in the absence of active intervention.