ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
N. W. Eidietis
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 738-744
Technical Paper | doi.org/10.1080/15361055.2021.1889919
Articles are hosted by Taylor and Francis Online.
Disruptions present a great challenge to achieving an economically viable commercial tokamak fusion reactor. Disruption handling, including prevention, mitigation, and resilient design, must be incorporated into future reactor designs at the same priority as core performance and steady-state heat flux removal. Prevention requires avoiding unstable regimes; actively stabilizing instabilities if they do appear; or, if those steps should fail, terminating the plasma-controlled rampdown. Mitigation is a last resort that utilizes massive impurity injection to reduce a damaging concentration of thermal and mechanical loads. Extremely robust disruption prevention will be of paramount importance to ensure high duty factor and capital return on the reactor investment, but the reactor environment poses significant technical challenges exceeding those in ITER. The long-term mission of a commercial reactor motivates investment in passive resilient design to survive disruptions in the absence of active intervention.