ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
T. E. Gebhart, A. G. Ghiozzi, D. A. Velez, L. R. Baylor, C. Chilen, S. J. Meitner
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 721-727
Technical Paper | doi.org/10.1080/15361055.2021.1874766
Articles are hosted by Taylor and Francis Online.
Shattered pellet injection (SPI) has been chosen as the baseline disruption mitigation system on ITER due to its ability to rapidly inject material deep into the plasma to greatly increase the plasma density and radiate the thermal energy. SPI utilizes a mechanical punch or high-pressure gas to release and accelerate a pellet that has been cryogenically desublimated in the barrel of a pipe gun. Various material injection combinations could possibly be implemented during different phases of a disruption event to radiate plasma energy, reduce electromagnetic loads on machine components, avoid the formation of runaway electrons, or to dissipate runaway electrons that form. Each injection phase could possibly utilize combinations of deuterium, neon, or argon.
In this paper we outline experimental measurements of pellet material shear strength at SPI operating temperatures to understand the force needed to release SPI pellets. Deuterium, neon, argon, and deuterium-neon mixture pellets with diameters of 8.5, 12.5, and 15.7 mm are formed at a range of relevant gas pressures and temperatures and dislodged from the cold zone with a slow-moving piston driven by a motor. The slow-moving piston is kept above the triple point temperature of the material while the pellet is forming, then cooled to below the triple point temperature before contacting the pellet to minimize any thermal conduction to the pellet. The piston incorporates a load cell to measure the force applied when the pellet breaks away from the cold zone in the barrel.
The ability of the gas and punch methods to exceed the shear strength of the studied pellet materials for release has been analyzed.
High-pressure gas delivered by fast-opening valves produce pressure shock to the pellet due to supersonic expansion of the propellant gas. Pressure (and therefore, force) oscillations are present due to transverse density propagation throughout the breech volume. Mechanical punches deliver an impact force through a high-kinetic energy impact. The effect of the mechanical shock on the pellet has been explored and is presented in this paper. Scaling to larger ITER-size SPI pellets will be described.