ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Noriyuki Unno, Kazuhisa Yuki, Jun Taniguchi, Shin-ichi Satake
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 716-720
Technical Paper | doi.org/10.1080/15361055.2021.1894080
Articles are hosted by Taylor and Francis Online.
Efficient heat transport and energy conversion are key factors for realizing a commercial fusion reactor. A promising method for enhancing heat transport performance and simplifying the transport system is thermosiphon. However, the maximum heat flux in the evaporation unit [namely, boiling heat transfer (BHT)] of the thermosiphon system should be improved to remove heat at high heat fluxes (>10 MW/m2). To improve BHT, we propose a new technique using a vibration material excited by boiling bubbles. In this study, we investigated the characteristics of BHT with and without the vibration material with pure water at atmospheric pressure to demonstrate our concept. We demonstrated that the vibration material enhances BHT when the vibration is synchronized with the frequency of boiling bubbles emitted from the heating surface.