ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Noriyuki Unno, Kazuhisa Yuki, Jun Taniguchi, Shin-ichi Satake
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 716-720
Technical Paper | doi.org/10.1080/15361055.2021.1894080
Articles are hosted by Taylor and Francis Online.
Efficient heat transport and energy conversion are key factors for realizing a commercial fusion reactor. A promising method for enhancing heat transport performance and simplifying the transport system is thermosiphon. However, the maximum heat flux in the evaporation unit [namely, boiling heat transfer (BHT)] of the thermosiphon system should be improved to remove heat at high heat fluxes (>10 MW/m2). To improve BHT, we propose a new technique using a vibration material excited by boiling bubbles. In this study, we investigated the characteristics of BHT with and without the vibration material with pure water at atmospheric pressure to demonstrate our concept. We demonstrated that the vibration material enhances BHT when the vibration is synchronized with the frequency of boiling bubbles emitted from the heating surface.