ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Dennis Youchison, James Klett, Brian Williams, Douglas Wolfe
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 692-698
Technical Paper | doi.org/10.1080/15361055.2020.1866945
Articles are hosted by Taylor and Francis Online.
Tungsten (W)–armored graphitic foam monoblocks were developed for applications requiring high-Z plasma-facing material in long-pulse fusion experiments and ultimately deuterium-tritium fusion reactors. The monoblocks are an integrated material system combining the advantages of a chemical vapor deposited (CVD) W coating with a high-conductivity graphitic foam. The W is a high-melting-point, high-Z material with low tritium retention. The graphitic foam coupled to a swirl tube serves as a high-thermal-conductivity heat sink that cannot melt, although it can sublime at much higher temperatures than copper melts. Together, they comprise a robust plasma-facing component (PFC) weighing roughly 5% of an all-W component or 17% of a traditional W-coated copper heat sink.
A single-channel mock-up consisting of four graphitic foam monoblocks equipped with a water-cooled swirl tube was fabricated for eventual testing in the 60-kW, EB-60, rastered electron beam at the Applied Research Laboratory of The Pennsylvania State University. Two monoblocks have a thin 50-μm-thick coating of pure W chemically vapor deposited over NbC and pure Nb interlayers. Two others have a 2-mm-thick pure W coating CVD on graphitic monoblocks using the same interlayers. The mock-up will be cooled with available 10 m/s, 0.7 MPa water with a 22°C inlet temperature and subjected to varying uniform heat loads up to 20 MW/m2. It is equipped with type-K thermocouples at various depths, and calibrated infrared thermography and spot pyrometry will be used to characterize the heated surface. Real-time water calorimetry will be used to ascertain the absorbed steady-state power and infer the heat flux during testing.
Since testing cannot be done under prototypic divertor flow conditions, it is necessary to predict the thermal response of this novel PFC system and investigate the power sharing between radiation and convection at divertor heat flux levels and its inherent ability to avoid critical heat flux. Results are reported for predictions obtained from computational fluid dynamics models up to 30 MW/m2 of steady-state uniform heat flux. Leading-edge heat loads of 30 MW/m2 on a 2-mm-wide side strip were also investigated to ascertain if coating delamination is likely.