ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
A. H. Seltzman, S. J. Wukitch
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 641-646
Technical Paper | doi.org/10.1080/15361055.2021.1913030
Articles are hosted by Taylor and Francis Online.
Laser powder bed fusion (LPBF), also known as selective laser melting, of Glenn Research Copper 84 (GRCop-84), a Cr2Nb (8 at. % Cr, 4 at. % Nb) precipitation-hardened alloy, produces a fully dense, high-conductivity alloy with tensile strength (470-MPa yield and 710-MPa ultimate tensile strength) superior to other competing copper alloys. Agglomeration and coarsening of precipitates in gas atomized GRCop-84 powder occurred above a threshold of 17 μm in diameter. Area of precipitates within cross sections is consistent among powder particles of different diameters indicating a consistent atomization process. Precipitates within gas atomized powder were shown to either melt and subsequently re-precipitate as the melt pool rapidly cools or break apart during LPBF resulting in precipitates smaller than in the initial powder. Precipitate size in powder therefore does not affect precipitate size, and thus tensile strength, in LPBF GRCop-84.