ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
C. E. Kessel, T. Bohm, M. S. Tillack, P. Titus, Y. Zhai
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 519-531
Technical Paper | doi.org/10.1080/15361055.2021.1909988
Articles are hosted by Taylor and Francis Online.
Restraining the size of fusion power plants is considered an important avenue to make them a competitive energy source among other forms of energy production. The most critical contributor to the size of a tokamak is the inboard radial build, composed of multiple components with various functions. This build is the ultimate limit to size reduction. The Fusion Nuclear Science Facility is reviewed and each element of the inboard build is described, showing that the build, including breeding blanket, structural ring, vacuum vessel, low-temperature shield, and toroidal field and central solenoid (CS) coils, contributes 2.9 m of build, with 0.6 m of bore hole inside the CS coil, or 3.5 m to reach the plasma scrape-off layer. This implies that it would be challenging to make a significantly smaller build and simultaneously meet all the engineering requirements.