ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Guido Van Oost
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 362-370
Technical Paper | Plasma and Fusion Energy Physics - Anomalous Transport | doi.org/10.13182/FST04-A502
Articles are hosted by Taylor and Francis Online.
The importance of radial electric fields was already recognised early in the research on controlled thermonuclear fusion. An initial description of electric field effects in toroidal confinement was given by Budker1 Such a configuration with combined magnetic and electric confinement ("magnetoelectric confinement", where the electric field provides a toroidal equilibrium configuration without rotational transform) was studied by Stix2, who suggested that a reactor-grade plasma under magnetoelectric confinement (electric fields of order 1 MV/cm) may reach a quasi-steady-state with ambipolar loss of electrons and some suprathermal ions (e.g. 3.5 MeV -particles). Experiments such as on the Electric Field Bumpy Torus EFBT3,4 provided quite favourable scaling for particle confinement. The possible importance of radial electric fields for transport was in the past repeatedly established5,6,7,8. Since the early days the plasma potential has been measured in tokamaks such as ST9, TM-410 and ISX-B11, but because no significant effects of the radial electric field Er on plasma transport were observed, no further research was conducted in tokamaks.