ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Wolfgang Hohenauer, Harald Bolt, Jochen Linke, Werner K. W. M. Malléner
Fusion Science and Technology | Volume 34 | Number 1 | August 1998 | Pages 18-27
Technical Paper | doi.org/10.13182/FST98-A50
Articles are hosted by Taylor and Francis Online.
To investigate the erosion and redeposition phenomena of fusion-related materials under stationary conditions, actively cooled test limiters were developed for the Tokamak Experiment for Technology Oriented Research (TEXTOR). The test limiters allow experiments under stationary conditions within a plasma pulse length of 10 s. Heat loads of typically 10 MW/m2 are removed by pressurized water; the volume flow is 10 m3/h, the pressure is 15 bar, and the minimum coefficient of heat transfer is nearly 70 000 W/m2K. The limiters were manufactured as low-pressure plasma-spraying thermally sprayed tungsten-coated heat sinks made of the molybdenum alloy TZM. The required properties of the tungsten coating were developed by the use of a statistically based optimization routine. Optimized, actively cooled limiters were successfully tested in Forschungszentrum Jülich's Material Research Ion Beam Test Facility (MARION) with hydrogen beams. Maximum heat loads of up to ~17 MW/m2 were applied without any failure of either the heat sink or the cooling system. The steady state of the surface temperature was measured within 2 s. Analytical and numerical models describing the effects of heat load distribution and spatial temperatures were found to be in excellent agreement with numerical predictions. In an additional experiment, loss of coolant was simulated. Transition boiling was generated, and after repeated heat loads higher than 10 MW/m2, cavitational damage of the heat sink occurred. Concerning the material selection for heat sinks of hypervapotrons and other cooling systems based on enhanced boiling of the cooling liquid, this result might be of special interest.