ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Star Trek or Planet of the Apes?
Craig Piercycpiercy@ans.org
These days, the ship of civil nuclear technology we are all aboard is sailing through a turbulent passage. The winds and currents are favorable, but there are swells ahead: steep energy-demand projections, buoyant equity valuations, splashy announcements, a generational realignment of nuclear policies and institutional norms.
Part of the reason we chose “Building the Nuclear Century” as the theme for this year’s Winter Conference was to put some ballast in the hull of the nuclear conversation.
Advanced nuclear fission and fusion energy development are accelerating, both here and around the world. And yet, at least in the U.S., we are still years away from connecting commercial Gen IV systems to our grid.
In a world growing increasingly impatient, how do we stay on task and deliver? There are three ingredients to success.
E. Mazzucato
Fusion Science and Technology | Volume 77 | Number 6 | August 2021 | Pages 489-492
Technical Note | doi.org/10.1080/15361055.2021.1923260
Articles are hosted by Taylor and Francis Online.
The replacement of the burning of fossil fuels in power plants with other forms of clean energy, for example, that of a tokamak fusion reactor employing the deuterium-tritium cycle, like ITER, would contribute enormously to the mitigation of climate change. Unfortunately, for such a type of fusion reactor, we expect the neutrons, which carry 80% of the fusion power with energies seven times larger than those of neutrons of fission reactors, to cause serious radiation damage with possible fracture of the blanket modules and the reactor wall. Hence, before contemplating the use of tokamaks for replacing fossil fuels of conventional power plants, we need a thorough investigation of the damage caused by neutrons in high-power tokamak reactors. Unfortunately, ITER will not provide any exhaustive information since it is neither a high power density tokamak nor a reactor. However, a rise in toroidal magnetic field by a factor of 2 would bring the fusion power of ITER to 8 GW and allow an investigation of the damage caused by neutrons to internal components and the reactor wall.