ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Student workforce opportunities at SRS are focus of agreement
Department of Energy contractor Savannah River Nuclear Solutions and Florida International University’s Applied Research Center have agreed to expand workforce opportunities for students at the Savannah River Site in South Carolina.
E. Mazzucato
Fusion Science and Technology | Volume 77 | Number 6 | August 2021 | Pages 489-492
Technical Note | doi.org/10.1080/15361055.2021.1923260
Articles are hosted by Taylor and Francis Online.
The replacement of the burning of fossil fuels in power plants with other forms of clean energy, for example, that of a tokamak fusion reactor employing the deuterium-tritium cycle, like ITER, would contribute enormously to the mitigation of climate change. Unfortunately, for such a type of fusion reactor, we expect the neutrons, which carry 80% of the fusion power with energies seven times larger than those of neutrons of fission reactors, to cause serious radiation damage with possible fracture of the blanket modules and the reactor wall. Hence, before contemplating the use of tokamaks for replacing fossil fuels of conventional power plants, we need a thorough investigation of the damage caused by neutrons in high-power tokamak reactors. Unfortunately, ITER will not provide any exhaustive information since it is neither a high power density tokamak nor a reactor. However, a rise in toroidal magnetic field by a factor of 2 would bring the fusion power of ITER to 8 GW and allow an investigation of the damage caused by neutrons to internal components and the reactor wall.