ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Xiaojun Ma, Qi Wang, Zongwei Wang, Xiangyu Wan
Fusion Science and Technology | Volume 77 | Number 6 | August 2021 | Pages 446-453
Technical Paper | doi.org/10.1080/15361055.2021.1927624
Articles are hosted by Taylor and Francis Online.
The oxygen concentration in the glow discharge polymer (GDP) capsule is one of the perturbations that most limit implosion quality. In order to investigate the feasibility of the Rutherford backscattering (RBS) technique for characterizing the oxygen concentration in a GDP capsule, the basic principle of RBS and the experimental conditions are introduced first. Then, the irradiation damage effect of incident ions on the GDP film is simulated numerically. The simulated results demonstrate that the GDP films will be damaged by the incident ions, and the vacancy damage dominates in irradiation modification. Finally, some GDP thin films are measured using RBS, and the oxygen concentration and its depth profile are obtained from the measured RBS spectrum. The simulated and experimental results prove that the oxygen concentration of GDP films can be measured precisely using RBS with an uncertainty of about 3.5%.