ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Ruihuan Li, Xiaoxiao Cao, Zhixian Su, Dan Sun, Yedi Chen, Wei Feng, Zhihui Zhang, Jijun Zhao
Fusion Science and Technology | Volume 77 | Number 6 | August 2021 | Pages 419-428
Technical Paper | doi.org/10.1080/15361055.2021.1920784
Articles are hosted by Taylor and Francis Online.
Density functional theory calculations were used to study the effects of inherent impurities C, N, and O on the stability and the self-trapping of interstitial He atoms in body-centered-cubic vanadium (V). The most stable site for the He atom nearby C, N, and O is the tetrahedral interstitial site (T-site) rather than the octahedral interstitial site (O-site). The presence of C, N, or O impurities reduces the stability of He in the T-site according to the calculated formation energies. The addition of C and O atoms is beneficial for He self-trapping while the addition of the N atom prevents He self-trapping in vanadium. The stable configurations for Xn-vacancy1 (XnVa1) are C2Va1, N2Va1, and O2Va1. The trapping energies of multiple He atoms captured by XnVa1 are investigated. Our results show that the presence of C, N, and O reduces vacancy trapping of He atoms. Our findings provide further understanding on the behavior of He atoms in vanadium with the influence of C, N, and O.