ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Bogdan Florian Monea, Eusebiu Ilarian Ionete, Catalin Ducu, Stefan Ionut Spiridon, Sorin Moga, Xingbo Han, Wei Liu
Fusion Science and Technology | Volume 77 | Number 5 | July 2021 | Pages 382-390
Technical Paper | doi.org/10.1080/15361055.2021.1903782
Articles are hosted by Taylor and Francis Online.
In the present study, the effect of Hf and Ti substitution of Zr in the ZrCo alloy, used for hydrogen isotope storage, has been investigated in order to ascertain the improvement of the anti-disproportionation property of ZrCo hydrides. The ultimate goal of the investigation is to develop a safe and economically viable solution for the long-term storage of deuterium and tritium. The intermetallic compounds Zrl-xTixCo and Zrl-xHfxCo (x = 0.1, 0.2) were prepared and their suitability for hydrogen isotope storage, protium (H) and deuterium (D), was investigated. The alloys were synthesized by arc melting under a controlled argon atmosphere and characterized by scanning electron microscope and X-ray diffraction analysis. The hydrogen isotope storage behavior of these alloys was probed by loading and unloading protium and deuterium. We present the pressure, composition, and temperature measurements for desorption, together with the thermodynamic parameters (enthalpy and entropy) of these alloys. The experimental results show that Ti and Hf substitution in the ZrCo alloys is suitable for fast delivery of hydrogen isotopes, even after their long-term storage.