ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
A. M. Zhukeshov, Zh. M. Moldabekov, B. M. Ibraev, A. U. Amrenova, A. T. Gabdullina
Fusion Science and Technology | Volume 77 | Number 5 | July 2021 | Pages 359-365
Technical Paper | doi.org/10.1080/15361055.2021.1916273
Articles are hosted by Taylor and Francis Online.
This paper is devoted to discussing the technical characteristics of pulsed plasma-focus (PF) generators and their features as fusion reactors as an alternative for stationary thermonuclear installations. First, the authors present results of experimental data obtained on the Pulse Plasma Accelerator–30 (PPA-30) and dense PF-4 devices. The pulse discharge current and jumped parameters and the energy distribution along and across the axis on the 31-kJ (at 30 kV and 69 μF) PPA-30 device were determined. It is indicated that plasma already is completely ionized at the kilo-ampere range and its inductance is small. The maximum energy density of the plasma was equal to 230 J/cm2 and a macrofocusing effect was observed. Second, the emission parameters of the PF-4 device were determinate. The neutron yield was equal to about 107 imp/shot. The variation of the axial and radial neutron yield was observed. Further, the problems of neutron yield on PF devices and options for the development of a fusion reactor taking into account other technical capabilities of PF are discussed. It is proposed to develop the design of PF in such a way as to take into account the peculiarities of the interaction of particles with an electric and magnetic field. In this situation, the important indicator is not the temperature of the plasma, but the geometry of the electrode system to provide a directed flow of particles.