ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Jin-Yang Li, Long Gu, Hu-Shan Xu, You-Peng Zhang, Cun-Feng Yao, Da-Jun Fan, Guan Wang, Xin-Kang Su
Fusion Science and Technology | Volume 77 | Number 5 | July 2021 | Pages 350-358
Technical Paper | doi.org/10.1080/15361055.2021.1904598
Articles are hosted by Taylor and Francis Online.
ITER is an experimental tokamak device that has many collaborators from different countries and aims to produce energy from nuclear fusion inside a reactor with magnetic confinement. Corresponding scientific data and structure visualization are important factors in connecting qualitative information from human intuition and quantitative content of physical-based datasets. Therefore, building an integrated platform with the interaction of scientific data visualization is inevitable for engineers and researchers in geographically distributed groups to effectively promote consistent design work, and it is also a key part in research and training processes for operators and students to better understand the ITER structure with analysis results. In this context, a digital ITER-type mock-up has been developed at the Institute of Modern Physics, Chinese Academy of Sciences based on an immersive virtual reality platform that is designed using client/server hybrid heterogeneous cloud architecture with many user-friendly and flexible features. Detailed ITER-type models have been developed and optimized in low-poly style to increase rendering speed, and scientific data in the scalar field have been represented by means of the view-dependent ray-casting method with topological texture images, which can fulfill real-time roaming and inspecting tasks for research purposes and provide an efficient and effective tool for fusion technology education at the University of Chinese Academy of Sciences.