ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Hitesh Patel, Nirmal Panda, Nitin Kanoongo, K. Balasubramanian, M. J. Singh, Arun Chakraborty
Fusion Science and Technology | Volume 77 | Number 4 | May 2021 | Pages 298-309
Technical Paper | doi.org/10.1080/15361055.2021.1898856
Articles are hosted by Taylor and Francis Online.
High heat flux components form the primary interface for thermal management of injectors in fusion devices. The requirement for such application varies from 1 to 10 MW/m2. Ultra-high-vacuum compatibility is the inherent characteristic of such components, and manufacturing processes involve the development of specific materials, process qualification of special processes like electron beam welding (EBW), and component performance validation. One such component of active thermal management in a neutral beam injector is the hypervapatron-based heat transfer element (HTE), which is designed to absorb heat flux as high as 10 MW/m2. The route to realization is through a prototype and a one-to-one model and evaluating their performance. The development route of HTEs includes several important areas. One area is development of precipitation-hardened CuCrZr material characterized for its fatigue life (more than 100 000 stress-controlled cycles); mechanical properties at ambient temperature [ultimate tensile strength (UTS) >384 MPa, elongation >13%] and at operational temperature, i.e., 350°C (UTS >263 MPa, elongation >14%); and restricted chemical composition range of Cr, Zr, Cd, and O2 to enhance the precipitation effect and weldability of the component. A second area is similar material (CuCrZr to CuCrZr) and dissimilar material (CuCrZr-Ni-SS316L) joining by an advanced technology like EBW in a controlled environment to enhance the localized high heat input over a large weld penetration depth with minimal distortion and thereby overcome the effect of thermal diffusion by typical copper during welding. A third area is validation of these weld joints with respect to international codes/standards. Successful realization of this route establishes HTEs as main baseline components of the high heat flux system or neutral beam system. Similar application areas can be identified in various fusion devices. The paper presents the implementation of this realization route of prototype HTEs including details of the assessment carried out with respect to application.