ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Hitesh Patel, Nirmal Panda, Nitin Kanoongo, K. Balasubramanian, M. J. Singh, Arun Chakraborty
Fusion Science and Technology | Volume 77 | Number 4 | May 2021 | Pages 298-309
Technical Paper | doi.org/10.1080/15361055.2021.1898856
Articles are hosted by Taylor and Francis Online.
High heat flux components form the primary interface for thermal management of injectors in fusion devices. The requirement for such application varies from 1 to 10 MW/m2. Ultra-high-vacuum compatibility is the inherent characteristic of such components, and manufacturing processes involve the development of specific materials, process qualification of special processes like electron beam welding (EBW), and component performance validation. One such component of active thermal management in a neutral beam injector is the hypervapatron-based heat transfer element (HTE), which is designed to absorb heat flux as high as 10 MW/m2. The route to realization is through a prototype and a one-to-one model and evaluating their performance. The development route of HTEs includes several important areas. One area is development of precipitation-hardened CuCrZr material characterized for its fatigue life (more than 100 000 stress-controlled cycles); mechanical properties at ambient temperature [ultimate tensile strength (UTS) >384 MPa, elongation >13%] and at operational temperature, i.e., 350°C (UTS >263 MPa, elongation >14%); and restricted chemical composition range of Cr, Zr, Cd, and O2 to enhance the precipitation effect and weldability of the component. A second area is similar material (CuCrZr to CuCrZr) and dissimilar material (CuCrZr-Ni-SS316L) joining by an advanced technology like EBW in a controlled environment to enhance the localized high heat input over a large weld penetration depth with minimal distortion and thereby overcome the effect of thermal diffusion by typical copper during welding. A third area is validation of these weld joints with respect to international codes/standards. Successful realization of this route establishes HTEs as main baseline components of the high heat flux system or neutral beam system. Similar application areas can be identified in various fusion devices. The paper presents the implementation of this realization route of prototype HTEs including details of the assessment carried out with respect to application.