ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
U. Shahid, B. W. N. Fitzpatrick, C. P. Chrobak, J. W. Davis, M. H. A. Piro
Fusion Science and Technology | Volume 77 | Number 4 | May 2021 | Pages 279-288
Technical Paper | doi.org/10.1080/15361055.2021.1883979
Articles are hosted by Taylor and Francis Online.
The erosion and redeposition of first-wall armor materials is a problem in nuclear fusion devices with carbon walls, where deuterium, tritium, and (eroded) carbon present in the plasma are deposited on the walls of the device, trapping the expensive and radiologically hazardous tritium. Thermo-oxidation, in which vessel surfaces are heated and oxygen containing gas is injected, is a possible solution. It results in the production of carbon oxides and tritiated water vapor, which can be pumped out by the vacuum pumps and recycled in a tritium recycling facility. In the present study, thermogravimetric analysis was used to measure the mass loss (or gain) of codeposited specimens from the General Atomics DIII-D National Fusion Facility under thermo-oxidation, in addition to laser thermal desorption spectroscopy. X-ray photo-electron spectroscopy was also used in this work to examine the tile’s surface composition pre and post oxidation. Dust scraped from the specimen was also studied, as this is a surrogate for dust that naturally falls from the tile codeposits and builds up in the tile gaps. One key conclusion is that boron oxides form where boron is present in the codeposit as an impurity, and these oxides dominate the weight-change behavior of the codeposit specimens for long exposures.