ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Hiroshige Kumamaru
Fusion Science and Technology | Volume 77 | Number 3 | April 2021 | Pages 235-249
Technical Paper | doi.org/10.1080/15361055.2021.1874767
Articles are hosted by Taylor and Francis Online.
Numerical calculations have been performed on liquid-metal magnetohydrodynamic flows through a rectangular channel in the magnetic field inlet region and magnetic field outlet region. The conservation equations of fluid mass and fluid momentum and the Poisson equation for electrical potential have been solved numerically. The numerical calculations have been carried out for Hartmann (Ha) numbers up to the order of 10 000 and a rectangular channel with electrically conducting channel walls. Attention is focused on pressure drops along the flow channel in the magnetic field inlet region and outlet region. The loss coefficients ζ can be represented by for both the magnetic field inlet region and outlet region, where k is a coefficient, and Ha, Re, and β are the Hartmann number, the Reynolds number, and the channel aspect ratio, respectively. The coefficient k depends on the gradient of applied magnetic field in the magnetic field inlet region and outlet region. However, the coefficient k does not change with the Ha number, the Re number, the wall conductivity number, and the aspect ratio very much.