ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Hiroshige Kumamaru
Fusion Science and Technology | Volume 77 | Number 3 | April 2021 | Pages 235-249
Technical Paper | doi.org/10.1080/15361055.2021.1874767
Articles are hosted by Taylor and Francis Online.
Numerical calculations have been performed on liquid-metal magnetohydrodynamic flows through a rectangular channel in the magnetic field inlet region and magnetic field outlet region. The conservation equations of fluid mass and fluid momentum and the Poisson equation for electrical potential have been solved numerically. The numerical calculations have been carried out for Hartmann (Ha) numbers up to the order of 10 000 and a rectangular channel with electrically conducting channel walls. Attention is focused on pressure drops along the flow channel in the magnetic field inlet region and outlet region. The loss coefficients ζ can be represented by for both the magnetic field inlet region and outlet region, where k is a coefficient, and Ha, Re, and β are the Hartmann number, the Reynolds number, and the channel aspect ratio, respectively. The coefficient k depends on the gradient of applied magnetic field in the magnetic field inlet region and outlet region. However, the coefficient k does not change with the Ha number, the Re number, the wall conductivity number, and the aspect ratio very much.