ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
B. Li, Z. W. Xia, Y. D. Pan, T. Z. Fang, B. Zhang, S. Liu, W. Li, Y. Yang, G. Kiss, S. Maruyama, U. Kruezi, X. G. Liu, F. Villers, X. M. Huang, M. Conroy, F. He
Fusion Science and Technology | Volume 77 | Number 3 | April 2021 | Pages 228-234
Technical Paper | doi.org/10.1080/15361055.2021.1874764
Articles are hosted by Taylor and Francis Online.
As an important part of the ITER gas injection system, the fusion power shutdown system delivers large quantities of gas into the vacuum vessel to stop the fusion power in an emergency case. Two identical but independent units are designed for mutual redundancy. Each unit includes an injection pipeline and a unit that contains a gas reservoir, solenoid valve, pneumatic isolation valve, and pressure switches. Among these components, the working gas reservoir parameters are investigated by experiments based on the required total gas quantity of at least 3000 Pa m3 neon or mixtures of neon and hydrogen injected within 3 s. The working gas is released utilizing a pneumatically actuated valve that is not affected by the strong stray magnetic field of about 0.205 T. The associated solenoid valve is equipped with magnetic shielding that is designed by a magnetostatic analysis. These components lie on the same plane in the unit to maximize the maintainability. Furthermore, the structure integrity of the unit and its support frame is validated by a preliminary structural analysis.