ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Cody S. Wiggins, Arturo Cabral, Lane B. Carasik
Fusion Science and Technology | Volume 77 | Number 3 | April 2021 | Pages 206-219
Technical Paper | doi.org/10.1080/15361055.2021.1872273
Articles are hosted by Taylor and Francis Online.
Twisted tape inserts are commonly used for heat transfer enhancement in fusion applications. Although these devices have been extensively studied, existing correlations relating friction factor to Reynolds number and system geometry are applicable only for tight-fitting inserts and cannot account for system roughness and fouling. In this work, we examine pressure losses in twisted tapes of various twist ratios using both a typical twisted tape correlation and a newer formulation that incorporates conventional channel flow correlations. We study flows down to a Reynolds number of 4000 and find that the channel flow treatment predicts experimental outcomes well for turbulent conditions, like those expected in the ITER divertor. For calculations at low Reynolds numbers (expected during start-up and show-down of the divertor), we propose that channel flow correlations be merged with twisted tape correlations. This new, merged correlation is seen to be applicable across all Reynolds numbers observed, although it predicts small divergences among tape pitches at low Reynolds numbers that are not clearly reflected in our experimental data. Experimental and legacy data show that conventional channel flow friction factor correlations can be used under this formulation for pressure drop predictions at Reynolds number above 15 000. We suggest the use of this twisting channel treatment for loose-fitting inserts and systems in which fouling and roughness may be of concern, allowing existing straight channel models to be used for twisted tape pressure drop calculations.