ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
John Bae, Hongwei Xu, Casey Kong, Salmaan Baxamusa, Neal Rice, Kelly Youngblood, Craig Alford, Michael Stadermann
Fusion Science and Technology | Volume 77 | Number 3 | April 2021 | Pages 180-187
Technical Paper | doi.org/10.1080/15361055.2020.1858674
Articles are hosted by Taylor and Francis Online.
Copper-doped beryllium spheres are an attractive ablator for inertial confinement fusion experiments. Beryllium spheres are made by sputtering beryllium onto spherical plastic mandrels which must then be removed through a hole that is laser drilled through the shell wall. The currently used mandrel material is glow discharge polymer. This material cannot be removed by solvent and must be “burned” out. The burnout process was originally performed by etching with dry air at 425°C, but this process can substantially roughen the inner surface, which can seed instabilities and increase mix during implosion experiments. In this paper, we explore the use of pure oxygen and ozone to reduce process temperature and improve inner and outer surface quality.