ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
John Bae, Hongwei Xu, Casey Kong, Salmaan Baxamusa, Neal Rice, Kelly Youngblood, Craig Alford, Michael Stadermann
Fusion Science and Technology | Volume 77 | Number 3 | April 2021 | Pages 180-187
Technical Paper | doi.org/10.1080/15361055.2020.1858674
Articles are hosted by Taylor and Francis Online.
Copper-doped beryllium spheres are an attractive ablator for inertial confinement fusion experiments. Beryllium spheres are made by sputtering beryllium onto spherical plastic mandrels which must then be removed through a hole that is laser drilled through the shell wall. The currently used mandrel material is glow discharge polymer. This material cannot be removed by solvent and must be “burned” out. The burnout process was originally performed by etching with dry air at 425°C, but this process can substantially roughen the inner surface, which can seed instabilities and increase mix during implosion experiments. In this paper, we explore the use of pure oxygen and ozone to reduce process temperature and improve inner and outer surface quality.