ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
G. M. Wallace, T. Bohm, C. E. Kessel
Fusion Science and Technology | Volume 77 | Number 2 | February 2021 | Pages 159-171
Technical Paper | doi.org/10.1080/15361055.2020.1858672
Articles are hosted by Taylor and Francis Online.
The Fusion Nuclear Science Facility (FNSF) is a proposed tokamak reactor with the mission to investigate operation of a fusion reactor in a nuclear environment. The high neutron fluence component of the FNSF mission requires steady-state operation for extremely long pulses (months) at full power. Plasma sustainment and current drive will be critical components of a successful FNSF. COMSOL Multiphysics® software is used for combined radiofrequency (RF) and thermal simulations of the lower hybrid current drive antenna system. These simulations consider the resistive RF losses in the antenna including realistic surface roughness and a range of potential materials. The thermal analysis adds volumetric nuclear heating, plasma heat flux on leading edges, and electromagnetic radiation from the plasma to the RF heating calculated by COMSOL. Additional neutronics calculations have been performed to determine the impact of these antenna designs on activated waste disposal for the materials considered. The simulations show that it is technically feasible to implement a fully active multijunction (FAM) rather than a passive-active multijunction (PAM) style of antenna if the septum between adjacent waveguides is sufficiently wide and the thermal conductivity of the structural material is sufficiently high. The FAM has the benefit of higher achievable power density with respect to the PAM, which results in a more compact antenna with potentially lower impact on neutron shielding and tritium breeding. These considerations point to tungsten rather than steel as the preferred structural material in constructing the antenna.