ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Quanwen Wu, Zhenhua Zheng, Jinchun Bao, Wenhua Luo, Daqiao Meng, Zhiyong Huang
Fusion Science and Technology | Volume 77 | Number 2 | February 2021 | Pages 81-87
Technical Paper | doi.org/10.1080/15361055.2020.1850157
Articles are hosted by Taylor and Francis Online.
In nuclear fusion reactor facilities, the multi-confinement system and the air detritiation system (ADS) are very important to prevent tritium leaking to the environment. A high-performance tritium oxidation catalyst is strongly required in the ADS. In this study, the air resistance and catalytic performance of honeycomb detritiation catalysts are investigated. Then, the honeycomb catalysts are applied in a glove-box detritiation system as well as in an ADS, and the detritiation performance is tested with tritium. Honeycomb catalysts have a much lower air resistance and an excellent scale-up effect due to the behavior of laminar flow. Thus, the honeycomb catalyst increases the reaction space velocity by nearly 100 times without decreasing the conversion rate of H2. Even at an extremely low tritium concentration, the honeycomb catalyst transforms tritium over 95% into tritiated water. In short, Pt-loaded honeycomb catalysts have a huge advantage in and broad potential for air detritiation.