ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Quanwen Wu, Zhenhua Zheng, Jinchun Bao, Wenhua Luo, Daqiao Meng, Zhiyong Huang
Fusion Science and Technology | Volume 77 | Number 2 | February 2021 | Pages 81-87
Technical Paper | doi.org/10.1080/15361055.2020.1850157
Articles are hosted by Taylor and Francis Online.
In nuclear fusion reactor facilities, the multi-confinement system and the air detritiation system (ADS) are very important to prevent tritium leaking to the environment. A high-performance tritium oxidation catalyst is strongly required in the ADS. In this study, the air resistance and catalytic performance of honeycomb detritiation catalysts are investigated. Then, the honeycomb catalysts are applied in a glove-box detritiation system as well as in an ADS, and the detritiation performance is tested with tritium. Honeycomb catalysts have a much lower air resistance and an excellent scale-up effect due to the behavior of laminar flow. Thus, the honeycomb catalyst increases the reaction space velocity by nearly 100 times without decreasing the conversion rate of H2. Even at an extremely low tritium concentration, the honeycomb catalyst transforms tritium over 95% into tritiated water. In short, Pt-loaded honeycomb catalysts have a huge advantage in and broad potential for air detritiation.