ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Mazhyn Skakov, Gainiya Zhanbolatova, Arman Miniyazov, Timur Tulenbergenov, Igor Sokolov, Yerzhan Sapatayev, Yernat Kozhakhmetov, Olga Bukina
Fusion Science and Technology | Volume 77 | Number 1 | January 2021 | Pages 57-66
Technical Paper | doi.org/10.1080/15361055.2020.1843885
Articles are hosted by Taylor and Francis Online.
This paper presents the results of a study on impact of high-power heat load and tungsten (W) surface carbidization on its structural-phase composition and physical-mechanical properties. In this regard, carbidization of a W surface was carried out by means of beam-plasma discharge in a simulation machine with plasma-beam installation. Certain data were obtained regarding temperature in control points of studied samples and temperature distribution throughout the monoblock element, made as a rectangle with an orifice for a cooling path, placed in a fusion reactor divertor. The paper demonstrates that changes in heat load power have an impact on microhardness, roughness, atomization of the carbidized W surface, and phase formation processes. It was established that a heat load q = 10 MW/m2 has very little effect on the elemental composition of the surface and structural-phase composition of W samples with a carbidized layer. Growth of thermal load up to q = 20 MW/m2 leads to a noticeable transformation of tungsten monocarbide (WC) into tungsten semicarbide (W2C) and cracking of the W sample surface.