ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE awards $134M for fusion research and development
The Department of Energy announced on Wednesday that it has awarded $134 million in funding for two programs designed to secure U.S. leadership in emerging fusion technologies and innovation. The funding was awarded through the DOE’s Fusion Energy Sciences (FES) program in the Office of Science and will support the next round of Fusion Innovation Research Engine (FIRE) collaboratives and the Innovation Network for Fusion Energy (INFUSE) awards.
Mazhyn Skakov, Gainiya Zhanbolatova, Arman Miniyazov, Timur Tulenbergenov, Igor Sokolov, Yerzhan Sapatayev, Yernat Kozhakhmetov, Olga Bukina
Fusion Science and Technology | Volume 77 | Number 1 | January 2021 | Pages 57-66
Technical Paper | doi.org/10.1080/15361055.2020.1843885
Articles are hosted by Taylor and Francis Online.
This paper presents the results of a study on impact of high-power heat load and tungsten (W) surface carbidization on its structural-phase composition and physical-mechanical properties. In this regard, carbidization of a W surface was carried out by means of beam-plasma discharge in a simulation machine with plasma-beam installation. Certain data were obtained regarding temperature in control points of studied samples and temperature distribution throughout the monoblock element, made as a rectangle with an orifice for a cooling path, placed in a fusion reactor divertor. The paper demonstrates that changes in heat load power have an impact on microhardness, roughness, atomization of the carbidized W surface, and phase formation processes. It was established that a heat load q = 10 MW/m2 has very little effect on the elemental composition of the surface and structural-phase composition of W samples with a carbidized layer. Growth of thermal load up to q = 20 MW/m2 leads to a noticeable transformation of tungsten monocarbide (WC) into tungsten semicarbide (W2C) and cracking of the W sample surface.