ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
T. K. Gray, D. L. Youchison, R. E. Ellis, M. A. Jaworski, A. Khodak, T. Looby, M. L. Reinke, G. Smalley, D. E. Wolfe
Fusion Science and Technology | Volume 77 | Number 1 | January 2021 | Pages 9-18
Technical Paper | doi.org/10.1080/15361055.2020.1831872
Articles are hosted by Taylor and Francis Online.
As part of the recovery project of the National Spherical Tokamak Experiment–Upgrade (NSTX-U), the divertor plasma-facing components (PFCs) were redesigned to handle significantly higher heat fluxes and longer pulse lengths than NSTX. The design process resulted in a castellated, graphite PFC tile. To verify the thermal performance of this design, dedicated electron beam, high heat flux (HHF) testing was carried out on a de-optimized mock-up PFC target. These tests demonstrated that the tile design is itself robust to large, localized thermal gradients. No mechanical damage to the mock-up was observed during HHF testing, though the actual PFC tile mechanical tie-down was not tested. Rather, when the surface temperature exceeded the sublimation temperature of graphite, carbon blooms from the mock-up tile surface were observed. This resulted in 1 to 2 mm of surface material ablating from the mock-up after repeated, highly localized electron beam exposures.