ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Vít Škvára, Václav Šmídl, Tomáš Pevný, Jakub Seidl, Aleš Havránek, David Tskhakaya
Fusion Science and Technology | Volume 76 | Number 8 | November 2020 | Pages 962-971
Technical Paper | doi.org/10.1080/15361055.2020.1820805
Articles are hosted by Taylor and Francis Online.
Chirping Alfvén eigenmodes were observed at the COMPASS tokamak. They are believed to be driven by runaway electrons (REs), and as such, they provide a unique opportunity to study the physics of nonlinear interaction between REs and electromagnetic instabilities, including important topics of RE mitigation and losses. On COMPASS, they can be detected from spectrograms of certain magnetic probes. So far, their detection has required much manual effort since they occur rarely. We strive to automate this process using machine learning techniques based on generative neural networks. We present two different models that are trained using a smaller, manually labeled database and a larger unlabeled database from COMPASS experiments. In a number of experiments, we demonstrate that our approach is a viable option for automated detection of rare instabilities in tokamak plasma.