ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Gonzalo Farias, Ernesto Fabregas, Sebastián Dormido-Canto, Jesús Vega, Sebastián Vergara
Fusion Science and Technology | Volume 76 | Number 8 | November 2020 | Pages 925-932
Technical Paper | doi.org/10.1080/15361055.2020.1820804
Articles are hosted by Taylor and Francis Online.
Anomaly detection addresses the problem of finding unexpected values in data sets. Often, these anomalies, also known as outliers, discordant values, or exceptions, describe patterns in the behavior of the data. Anomaly detection is important because it frequently involves significant and critical information in many application domains. In the case of nuclear fusion, there is a wide variety of anomalies that could be related to plasma behaviors, such as disruptions or low-high (L-H) transitions. In this context, there are known and unknown anomalies, where unknown anomalies represent the largest proportion of the total that can be found in nuclear fusion. This paper presents a study of the application of deep learning and architecture called Autoencoder to detect anomalies predicting (encode-decode) in a discharge.