ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Gonzalo Farias, Ernesto Fabregas, Sebastián Dormido-Canto, Jesús Vega, Sebastián Vergara
Fusion Science and Technology | Volume 76 | Number 8 | November 2020 | Pages 925-932
Technical Paper | doi.org/10.1080/15361055.2020.1820804
Articles are hosted by Taylor and Francis Online.
Anomaly detection addresses the problem of finding unexpected values in data sets. Often, these anomalies, also known as outliers, discordant values, or exceptions, describe patterns in the behavior of the data. Anomaly detection is important because it frequently involves significant and critical information in many application domains. In the case of nuclear fusion, there is a wide variety of anomalies that could be related to plasma behaviors, such as disruptions or low-high (L-H) transitions. In this context, there are known and unknown anomalies, where unknown anomalies represent the largest proportion of the total that can be found in nuclear fusion. This paper presents a study of the application of deep learning and architecture called Autoencoder to detect anomalies predicting (encode-decode) in a discharge.