ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
C. Rea, K. J. Montes, A. Pau, R. S. Granetz, O. Sauter
Fusion Science and Technology | Volume 76 | Number 8 | November 2020 | Pages 912-924
Technical Paper | doi.org/10.1080/15361055.2020.1798589
Articles are hosted by Taylor and Francis Online.
In this paper we lay the groundwork for a robust cross-device comparison of data-driven disruption prediction algorithms on DIII-D and JET tokamaks. In order to consistently carry on a comparative analysis, we define physics-based indicators of disruption precursors based on temperature, density, and radiation profiles that are currently not used in many other machine learning predictors for DIII-D data. These profile-based indicators are shown to well-describe impurity accumulation events in both DIII-D and JET discharges that eventually disrupt. The univariate analysis of the features used as input signals in the data-driven algorithms applied on the data of both tokamaks statistically highlights the differences in the dominant disruption precursors. JET with its ITER-like wall is more prone to impurity accumulation events, while DIII-D is more subject to edge-cooling mechanisms that destabilize dangerous magnetohydrodynamic modes. Even though the analyzed data sets are characterized by such intrinsic differences, we show through a few examples that the inclusion of physics-based disruption markers in data-driven algorithms is a promising path toward the realization of a uniform framework to predict and interpret disruptive scenarios across different tokamaks. As long as the destabilizing precursors are diagnosed in a device-independent way, the knowledge that data-driven algorithms learn on one device can be re-used to explain a disruptive behavior on another device.