ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Z. W. Xia, W. Li, X. G. Liu, X. M. Huang, Y. D. Pan, S. Liu, T. Jiang, B. Li, S. Maruyama, Y. Yang, G. Kiss, U. Kruezi
Fusion Science and Technology | Volume 76 | Number 7 | October 2020 | Pages 848-856
Technical Paper | doi.org/10.1080/15361055.2020.1817702
Articles are hosted by Taylor and Francis Online.
The ITER gas injection system delivers gases from the tritium plant to the vacuum vessel, fueling pellet injection system, and neutral beam for plasma operation and fusion power shutdown. In this system, the gas fueling (GF) gas valve box (GVB) is an indispensable part that mainly provides functions of gas throughput control and measurement of gas pressure, flow rate, and temperature. The preliminary structure design is largely driven by the requirements of magnetic field compatibility and limited integration space. A strong magnetic field of over 0.2 T exists around the GVB locations, so a magnetic shielding design is required to ensure the normal function of susceptible components. Instead of the previous overall shielding, a local magnetic shielding has been developed by a validated analysis method. As a result, the total weight of the shield has been reduced from over 7000 kg to about 200 kg. Furthermore, considering the limited space reservation, a highly compact flat layout for the GF GVB has been developed to ensure enough maintenance space in front of it. In addition, other requirements such as structure integrity under various load combinations, leak detectability, in situ maintainability, etc., have all been taken into account.