ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Z. W. Xia, W. Li, X. G. Liu, X. M. Huang, Y. D. Pan, S. Liu, T. Jiang, B. Li, S. Maruyama, Y. Yang, G. Kiss, U. Kruezi
Fusion Science and Technology | Volume 76 | Number 7 | October 2020 | Pages 848-856
Technical Paper | doi.org/10.1080/15361055.2020.1817702
Articles are hosted by Taylor and Francis Online.
The ITER gas injection system delivers gases from the tritium plant to the vacuum vessel, fueling pellet injection system, and neutral beam for plasma operation and fusion power shutdown. In this system, the gas fueling (GF) gas valve box (GVB) is an indispensable part that mainly provides functions of gas throughput control and measurement of gas pressure, flow rate, and temperature. The preliminary structure design is largely driven by the requirements of magnetic field compatibility and limited integration space. A strong magnetic field of over 0.2 T exists around the GVB locations, so a magnetic shielding design is required to ensure the normal function of susceptible components. Instead of the previous overall shielding, a local magnetic shielding has been developed by a validated analysis method. As a result, the total weight of the shield has been reduced from over 7000 kg to about 200 kg. Furthermore, considering the limited space reservation, a highly compact flat layout for the GF GVB has been developed to ensure enough maintenance space in front of it. In addition, other requirements such as structure integrity under various load combinations, leak detectability, in situ maintainability, etc., have all been taken into account.