ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
E. Mazzucato
Fusion Science and Technology | Volume 76 | Number 7 | October 2020 | Pages 807-813
Technical Paper | doi.org/10.1080/15361055.2020.1795972
Articles are hosted by Taylor and Francis Online.
The paper describes a fusion reactor scheme consisting of two 200-m-long magnetic mirrors with a ratio of two connected by semicircular sections to form a racetrack configuration. The two most serious problems of magnetic mirrors, magnetohydrodynamic stability and end losses, are solved by minimizing the negative curvature of the mirror magnetic field lines and using helical windings in the curved sections to add a positive curvature and strong shear to the magnetic field lines at and beyond the mirror throat and for confining the mirror end losses. The reactor should be capable of producing at least 13 GW of fusion power when operating in deuterium-tritium at the same plasma density and temperature as ITER.