ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Innovation for advanced fuels at SRNL
As the only Department of Energy Office of Environmental Management–sponsored national lab, Savannah River National Laboratory has a history deeply rooted in environmental stewardship efforts such as nuclear material processing and disposition technologies. SRNL’s demonstrated expertise is now being leveraged to solve nuclear fuel supply -chain obstacles by providing a source of high-assay low-enriched uranium fuel for advanced reactors.
E. Mazzucato
Fusion Science and Technology | Volume 76 | Number 7 | October 2020 | Pages 807-813
Technical Paper | doi.org/10.1080/15361055.2020.1795972
Articles are hosted by Taylor and Francis Online.
The paper describes a fusion reactor scheme consisting of two 200-m-long magnetic mirrors with a ratio of two connected by semicircular sections to form a racetrack configuration. The two most serious problems of magnetic mirrors, magnetohydrodynamic stability and end losses, are solved by minimizing the negative curvature of the mirror magnetic field lines and using helical windings in the curved sections to add a positive curvature and strong shear to the magnetic field lines at and beyond the mirror throat and for confining the mirror end losses. The reactor should be capable of producing at least 13 GW of fusion power when operating in deuterium-tritium at the same plasma density and temperature as ITER.