ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
T. Cardenas, T. J. Murphy, L. Kuettner, B. Patterson, L. Goodwin, K. Cluff, J. Oertel, T. Day, S. Edwards, C. E. Hamilton, R. Randolph, K. Henderson, J. Cowan, S. J. Shin, S. Bhandarkar, B. J. Kozioziemski
Fusion Science and Technology | Volume 76 | Number 7 | October 2020 | Pages 795-806
Technical Paper | doi.org/10.1080/15361055.2020.1790713
Articles are hosted by Taylor and Francis Online.
One of the great challenges of inertial confinement fusion and high energy density experiments is understanding the effects of mix on thermonuclear burn. The MARBLE campaign, conceived at Los Alamos National Laboratory, aims to gather new insights into this issue by utilizing unique target capsules containing polymer foams of variable pore sizes, tunable over an order of magnitude. Such capsules allow the degree of initial heterogeneity to be controlled experimentally for the first time. Here, we describe the various characterization efforts used to gain understanding of the chemical structure and behavior of the foam. Previous experiments were not sensitive to foam physical properties, and the MARBLE platform has aided in the development of techniques to measure foam properties such as deuterium content, density variation, hydrogen adsorption, and pore size and volume distribution.