ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
H. H. Lee, J. K Lee, W. H. Ko
Fusion Science and Technology | Volume 76 | Number 7 | October 2020 | Pages 787-794
Technical Paper | doi.org/10.1080/15361055.2020.1790712
Articles are hosted by Taylor and Francis Online.
Charge exchange spectroscopy has been widely used in fusion devices to measure ion temperature, and toroidal and poloidal flow velocities of plasma. For local measurement, especially in the core region of the plasma, the spectrum emitted by the charge exchange reaction between the main plasma ions or impurity ions and the intentionally injected neutral beam should be analyzed so that parameters can be accurately deduced. Since the line-integrated spectrum signal through the line of sight of the diagnostic optics usually contains an unnecessary overlapped spectrum signal, referred to as the background signal, that typically originates from the plasma boundary region, a beam modulation technique is commonly applied to separate the background signal from the measured spectrum. Recently, it has been demonstrated in the KSTAR tokamak that a two-Gaussian fitting (TGF) method can be applied to analyze the spectrum and deduce plasma ion temperature and toroidal rotation velocity profiles of reasonable accuracy without beam modulation. It has been realized that the measurement result by the TGF method can be alternatively used to investigate plasma transport dynamics when beam modulation is prohibited to avoid any possible disturbance inhibiting robust plasma control and stable operation of the neutral beam injection system.