ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
TVA and Entra1 to deploy 6 GW of NuScale SMRs
The Tennessee Valley Authority and Houston, Texas–based energy production company Entra1 Energy recently announced the signing of an agreement to collaborate on the deployment of six new nuclear power plants equipped with NuScale small modular reactors.
D. Jiang, Y. Y. Li, X. Q. Wu, T. Zhang, B. Lyu, X. Gao, G. S. Xu
Fusion Science and Technology | Volume 76 | Number 6 | August 2020 | Pages 723-730
Technical Paper | doi.org/10.1080/15361055.2020.1777670
Articles are hosted by Taylor and Francis Online.
Understanding the influence of edge toroidal rotation in confined plasmas on the L-H transition is important for improving the plasma performance of future fusion devices. We report the results of experiments on the Experimental Advanced Superconducting Tokamak (EAST) to study this relationship. We used edge toroidal charge exchange recombination spectroscopy (eCXRS) as a diagnostic to study edge toroidal rotation. By analyzing the contribution of each term in the radial electric field, our experimental results show how the L-H transition depends on the edge toroidal rotation. Generally, the power of the transition increases with increasing edge toroidal rotation. The observed reduction of injected power can be explained by the change of the edge radial electric field. This reduced power threshold at lower toroidal rotation could provide an important benefit for inherently low-rotation plasma devices such as ITER and the China Fusion Engineering Test Reactor (CFETR).