ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
S. Smolentsev, T. Rhodes, Y. Yan, A. Tassone, C. Mistrangelo, L. Bühler, F. R. Urgorri
Fusion Science and Technology | Volume 76 | Number 5 | July 2020 | Pages 653-669
Technical Paper | doi.org/10.1080/15361055.2020.1751378
Articles are hosted by Taylor and Francis Online.
In “An Approach to Verification and Validation of MHD Codes for Fusion Applications” [S. Smolentsev et al., Fusion Eng. Des., Vol. 100, p. 65 (2015)], an effort for verification and validation of computer codes for liquid metal flows in a magnetic field for fusion cooling/breeding applications was initiated. The current study continues that effort. A group of experts in computational magnetohydrodynamics from several institutions in the United States and Europe performed a code-to-code comparison for the selected reference case of a mixed-convection buoyancy-opposed magnetohydrodynamic flow of eutectic lead-lithium (PbLi) alloy in a thin-wall conducting square duct at Hartmann number Ha = 220, Reynolds number Re = 3040, and Grashof number Gr = 2.88 × 107. As shown, the reference flow demonstrates a boundary layer separation in the heated region and formation of a reversed flow zone. The results of the comparison suggest that all five solvers predict well the key flow features but have moderate quantitative differences, in particular, in the location of the separation point. Also, two of the codes are more computationally dissipative, showing no velocity and temperature oscillations.