ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
H. J. Ahn, T. J. Kim, S. B. Park, M. H. Baik, Y. K. Choi, J. M. Park, B. K. Lee
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 596-599
Technical Paper | doi.org/10.1080/15361055.2020.1729296
Articles are hosted by Taylor and Francis Online.
Korea Hydro & Nuclear Power Company, Ltd., has operated the Wolsong Tritium Removal Facility (WTRF) since 2007 to reduce tritium concentrations in the moderator and coolant of the Wolsong nuclear power plant. As a result of the WTRF operation, the concentration of tritium in the moderator and coolant significantly decreased from 2320 to 9.3 GBq/kg. In particular, the tritium concentrations of the radioactive waste directly affected by radioactivity in the moderator and coolant were reduced by up to 99% during the WTRF operation. For this purpose, a chemical separation and quantification method for tritium separation was developed, and its average recovery yield was 98%.