ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Dongxun Zhang, Wei Liu, Wenguan Liu
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 543-552
Technical Paper | doi.org/10.1080/15361055.2020.1725368
Articles are hosted by Taylor and Francis Online.
With the method of gas-driven permeation, a series of permeation experiments was carried out using Hastelloy N alloy membrane in an elevated temperature range of 400°C to 800°C with different hydrogen isotopes. A complete set of permeability, diffusivity, and Sieverts’ constant for hydrogen and deuterium in Hastelloy N alloy was successfully obtained. The isotope effect in the diffusion process was analyzed and compared with references. The ratios of diffusive transport parameters for hydrogen and deuterium were a permeability ratio of ФH/ФD = 1.32exp(0.34kJ/RT), a diffusivity ratio of DH/DD = 1.15exp(−0.41kJ/RT), and a Sieverts’ constant ratio of KS,H/KS,D = 1.16exp(0.21kJ/RT). The result that the permeation flux of deuterium was decreased after introducing hydrogen could be used to suppress the permeation of tritium in future tritium control of the Fluoride-salt-cooled High-temperature Reactor (FHR). Compared with NiO, the Cr2O3 formed in the surface oxidation layer of Hastelloy N alloy showed better hydrogen permeation barrier performance after baking above 700°C in air.