ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Dongxun Zhang, Wei Liu, Wenguan Liu
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 543-552
Technical Paper | doi.org/10.1080/15361055.2020.1725368
Articles are hosted by Taylor and Francis Online.
With the method of gas-driven permeation, a series of permeation experiments was carried out using Hastelloy N alloy membrane in an elevated temperature range of 400°C to 800°C with different hydrogen isotopes. A complete set of permeability, diffusivity, and Sieverts’ constant for hydrogen and deuterium in Hastelloy N alloy was successfully obtained. The isotope effect in the diffusion process was analyzed and compared with references. The ratios of diffusive transport parameters for hydrogen and deuterium were a permeability ratio of ФH/ФD = 1.32exp(0.34kJ/RT), a diffusivity ratio of DH/DD = 1.15exp(−0.41kJ/RT), and a Sieverts’ constant ratio of KS,H/KS,D = 1.16exp(0.21kJ/RT). The result that the permeation flux of deuterium was decreased after introducing hydrogen could be used to suppress the permeation of tritium in future tritium control of the Fluoride-salt-cooled High-temperature Reactor (FHR). Compared with NiO, the Cr2O3 formed in the surface oxidation layer of Hastelloy N alloy showed better hydrogen permeation barrier performance after baking above 700°C in air.