ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Shouxi Gu, Qiang Qi, Yingchun Zhang, Baolong Ji, Haishan Zhou, Guang-Nan Luo
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 536-542
Technical Paper | doi.org/10.1080/15361055.2020.1718950
Articles are hosted by Taylor and Francis Online.
Core-shell Li2TiO3-Li4SiO4 has been suggested as an advanced tritium breeder for outstanding mechanical strength and rich lithium. However, no study has reported on the release behavior of hydrogen isotopes from core-shell Li2TiO3-Li4SiO4. This paper focuses on a deuterium exposure experiment to investigate deuterium release behavior. X-ray diffraction, Raman, and electron spin resonance measurements were adopted to analyze the phase change, crystal structure modification, and defects before and after deuterium exposure. Thermal desorption spectroscopy was used to study the deuterium release behavior of core-shell Li2TiO3-Li4SiO4. Deuterium release from single Li4SiO4 and Li2TiO3 was also examined for comparison. The similarity of the deuterium release profiles between core-shell Li2TiO3-Li4SiO4 and Li4SiO4 was observed, which was considered to be caused by the incomplete coverage of shell Li2TiO3 on the core-shell samples.