ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Bennet Krasch, Robin Größle, Daniel Kuntz, Sebastian Mirz
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 481-487
Technical Paper | doi.org/10.1080/15361055.2020.1718841
Articles are hosted by Taylor and Francis Online.
A crucial part of the closed fuel cycle of future fusion power plants will be isotope separation, which takes place in a cryogenic distillation refraction column, where all six hydrogen isotopologues are separated due to their different vapor pressures at a given temperature. For monitoring and process controlling, the Tritium Laboratory Karlsruhe has investigated liquid hydrogen by infrared (IR) absorption spectroscopy and presented the first successful calibration for the inactive isotopologues. Now, the new Tritium Absorption InfraRed Spectroscopy 2 (T2ApIR) experiment, which is fully tritium compatible, is under construction and aims to provide a calibration for concentration measurements of all six hydrogen isotopologues in solid, liquid, and gaseous phases via not only IR absorption but also Raman spectroscopy. One major challenge of the new experiment so far has been the design of the cryostat, which had to fulfill diverse technical and safety requirements regarding tritium compatibility, cryogenics, and overpressure and the combination of optical components for Raman and IR spectroscopy.