ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Bennet Krasch, Robin Größle, Daniel Kuntz, Sebastian Mirz
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 481-487
Technical Paper | doi.org/10.1080/15361055.2020.1718841
Articles are hosted by Taylor and Francis Online.
A crucial part of the closed fuel cycle of future fusion power plants will be isotope separation, which takes place in a cryogenic distillation refraction column, where all six hydrogen isotopologues are separated due to their different vapor pressures at a given temperature. For monitoring and process controlling, the Tritium Laboratory Karlsruhe has investigated liquid hydrogen by infrared (IR) absorption spectroscopy and presented the first successful calibration for the inactive isotopologues. Now, the new Tritium Absorption InfraRed Spectroscopy 2 (T2ApIR) experiment, which is fully tritium compatible, is under construction and aims to provide a calibration for concentration measurements of all six hydrogen isotopologues in solid, liquid, and gaseous phases via not only IR absorption but also Raman spectroscopy. One major challenge of the new experiment so far has been the design of the cryostat, which had to fulfill diverse technical and safety requirements regarding tritium compatibility, cryogenics, and overpressure and the combination of optical components for Raman and IR spectroscopy.