ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Masahiro Tanaka, Naoyuki Suzuki, Hiromi Kato, Chie Iwata, Naofumi Akata, Hiroshi Hayashi, Hitoshi Miyake
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 475-480
Technical Paper | doi.org/10.1080/15361055.2020.1718840
Articles are hosted by Taylor and Francis Online.
In a large fusion test facility, when a deuterium-plasma experiment is conducted a small amount of tritium is produced by the d(d, p)t reaction. From the viewpoints of radiation management and public acceptance, the tritium monitoring and recovery systems were developed and installed for the fusion test device. As for the tritium monitoring equipment, an expiratory test system of tritium was utilized for the internal dose assessment of workers. Active tritium samplers were operated continuously to monitor the amount of tritium released from the stack. As for the tritium recovery equipment, an exhaust detritiation system (EDS) for the plasma experiment has been developed and installed at the downstream of the vacuum pumping system in the fusion test device. All of the exhausted tritium from the vacuum vessel was treated by the EDS during the deuterium-plasma experimental campaign. Then, the tritium recovery rate achieved was more than 95%.