ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
Masahiro Tanaka, Naoyuki Suzuki, Hiromi Kato, Chie Iwata, Naofumi Akata, Hiroshi Hayashi, Hitoshi Miyake
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 475-480
Technical Paper | doi.org/10.1080/15361055.2020.1718840
Articles are hosted by Taylor and Francis Online.
In a large fusion test facility, when a deuterium-plasma experiment is conducted a small amount of tritium is produced by the d(d, p)t reaction. From the viewpoints of radiation management and public acceptance, the tritium monitoring and recovery systems were developed and installed for the fusion test device. As for the tritium monitoring equipment, an expiratory test system of tritium was utilized for the internal dose assessment of workers. Active tritium samplers were operated continuously to monitor the amount of tritium released from the stack. As for the tritium recovery equipment, an exhaust detritiation system (EDS) for the plasma experiment has been developed and installed at the downstream of the vacuum pumping system in the fusion test device. All of the exhausted tritium from the vacuum vessel was treated by the EDS during the deuterium-plasma experimental campaign. Then, the tritium recovery rate achieved was more than 95%.