ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Gregory C. Staack, David W. James
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 471-474
Technical Paper | doi.org/10.1080/15361055.2020.1718839
Articles are hosted by Taylor and Francis Online.
Hydride beds containing LaNi4.25Al0.75 (LANA.75) are used to store significant quantities of tritium. These hydride beds have a limited service life due to radiolytic decay of tritium to 3He within the metal matrix. The crystal structure of the hydride is altered by trapped 3He, which has a very low solubility in the metal. The altered structure induces the formation of a heel of trapped hydrogen isotopes and diminishes the reversible capacity of the hydride. With sufficient tritium exposure, the bed loses the ability to deliver 3He-free tritium, and replacement is needed. Demonstration of a means to regenerate tritium-aged LANA.75 in situ would delay or even eliminate the need to replace lanthanum nickel aluminum (LANA) hydride beds. This paper presents test results obtained during regeneration testing. The efficacy of regeneration testing was evaluated by comparing tritium desorption isotherms collected on the hydride before and after exposure to regeneration conditions. Testing was performed on a bench-scale tritium-aged LANA.75 sample that was previously isotopically exchanged (from tritium to deuterium), passivated, and recovered. Once transferred to a high-temperature test cell, the deuterium heel of the sample was isotopically exchanged with tritium, and a baseline desorption isotherm was collected for comparison purposes. The sample was then heated under vacuum, and comparative isotherms were gathered between regeneration evolutions. Shifts in isotherms show progressive improvements with higher-temperature exposure over the tritium-aged baseline. The heel was significantly reduced, and the reversible capacity of the hydride was essentially restored to near virgin values. For all tested conditions, the plateau pressure remained higher than virgin LANA.75.