ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Yasuhisa Oya, Suguru Masuzaki, Masayuki Tokitani, Moeko Nakata, Fei Sun, Makoto Oyaidzu, Kanetsuku Isobe, Nobuyuki Asakura, Teppei Otsuka, Anna Widdowson, Jari Likonen, Marek Rubel, JET Contributors
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 439-445
Technical Paper | doi.org/10.1080/15361055.2020.1716455
Articles are hosted by Taylor and Francis Online.
Hydrogen isotope retention and chemical state for the tiles exposed to plasma in the JET–ITER-like wall (ILW) during two campaigns in 2011–2012 (first campaign, ILW-1) and 2015–2016 (third campaign, ILW-3) were studied and compared by means of X-ray photoelectron spectroscopy and thermal desorption spectroscopy. In both campaigns the upper part of the inner divertor tiles was the deposition-dominated area, while erosion was observed on the outer divertor tiles. Therefore, higher deuterium retention was found on the inner divertor tiles. The major D desorption peak for the inner divertor tiles from ILW-3 was located at the temperature range of 470°C to 520°C, which was higher than measured after ILW-1: 370°C to 430°C. The XPS analyses showed the formation of a BeO layer on the ILW-3 inner divertor tiles, while after ILW-1 the layers also contained a significant amount of carbon. Deuterium retention was reduced toward the outer divertor tiles. The differences could be related to the difference in the power level in the two campaigns.