ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Kyeongmin Oh, Dowan Kim, Kisung Lim, Hyunchul Ju
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 415-423
Technical Paper | doi.org/10.1080/15361055.2020.1712995
Articles are hosted by Taylor and Francis Online.
We present a three-dimensional (3-D) steam-methane-reforming (SMR) model consisting of a steam-reforming (SR) reactor, water gas shift reactor, preferential oxidation reactor, catalytic burner, heat exchangers, and balance of plant components. The mass and energy balance equations are derived considering the kinetic expressions of various SMR reactions and implemented in the commercial computational fluid dynamics software program Fluent by employing user-defined functions. The 3-D SMR model is then applied to a 10-kW SR reformer geometry and simulated for comparison with in-house experimental data. The simulation results and the experimental data show good agreement, and the model accurately captures the experimental exhaust gas compositions and the reactor outlet temperatures. The proposed 3-D simulation tool for predicting various transport and chemical processes is highly desirable from the viewpoint of design and optimization of full-scale SMR-based fuel processors.