ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Kieran Dolan, Guiqiu Zheng, David Carpenter, Steven Huang, Lin-Wen Hu
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 398-403
Technical Paper | doi.org/10.1080/15361055.2020.1712993
Articles are hosted by Taylor and Francis Online.
Advanced reactor applications that use a molten fluoride salt coolant and graphite moderator are under consideration as next-generation energy technologies. For molten salts with lithium or beryllium, such as flibe (2LiF-BeF2), the production of tritium from neutron irradiation is a significant technical challenge. Understanding the expected quantities and mechanisms for tritium retention in graphite is important for designing tritium management strategies in these advanced reactors. In this work, the tritium content of IG-110U graphite from a 2013 in-core flibe irradiation experiment was measured by leaching in water and thermal desorption. Five total samples were tested, with an average measured tritium content per salt-contacting surface area of 3.83 ± 0.25 Ci/m2. The tritium measured from the thermal desorption experiments was primarily in a water-insoluble form. Compared to the overall tritium generation during the irradiation, the total amount of retention in graphite predicted by the desorption measurements is significant.