ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Viorel Fugaru, George Bubueanu, Catalin Stelian Tuta, Mihail-Razvan Ioan
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 347-350
Technical Paper | doi.org/10.1080/15361055.2020.1712008
Articles are hosted by Taylor and Francis Online.
The Tritium Laboratory at Horia Hulubei National Institute for Physics and Nuclear Engineering was initially licensed in 1976 and completely refurbished in 2011 as a unique isotope laboratory focused on tritium handling and processing to conduct a variety of scientific experiments. During laboratory renovation, different types of solid radioactive waste or potential waste contaminated with tritium were created: bricks, mortars, cements, false ceiling (polyvinyl chloride), linoleum, rubber, etc.
In order to fulfill all the requirements of the license issued by the Romanian regulatory body, the characterization of the physical, chemical, and radiological properties of the waste, in order to establish the need for further treatment, conditioning, and for storage or disposal, was mandatory. The present work treats the development of a method for the determination of tritium activity in the solid waste according to the operation licensing framework. The measurement results, regarding the tritium-specific activity in different solid waste resulting from the renovation of the laboratory, are presented in this paper.