ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Bahrain signs a nuclear collaboration MOU with the U.S.
Less than a week after news broke of the U.S. entering into civil nuclear talks with Malaysia, the U.S. State Department announced that Secretary of State Marco Rubio and Bahrain’s Minister of Foreign Affairs Abdullatif bin Rashid Al Zayani have also signed a memorandum of understanding concerning civil nuclear cooperation.
S. E. Lee, Y. Hatano, M. Hara, M. Matsuyama
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 327-332
Technical Paper | doi.org/10.1080/15361055.2020.1711855
Articles are hosted by Taylor and Francis Online.
Nondestructive measurement of tritium (T) content in solid materials is important for safe and cost-effective disposal of contaminated wastes, and beta-ray induced X-ray spectrometry (BIXS) has been developed for this purpose. A common way to obtain depth profiles of T in solids using BIXS is to perform simulation of X-ray spectra for assumed depth profiles and find a profile giving the best agreement with observation. A detailed understanding of attenuation of low-energy X-rays (≤18.6 keV) by detector components such as a window material is required for interpretation of measured spectra and simulation. In this study, BIXS spectra of a tungsten reference sample with known T depth profile were measured using two different semiconductor detectors and simulated using the Monte Carlo simulation toolkit Geant4. In the low-energy region (<2 keV), the difference in internal structure resulted in a noticeable difference in the BIXS spectra. The disagreement between the measured and the simulated spectra was also significant at <2 keV. Nevertheless, at >2 keV, the BIXS spectra were insensitive to the internal structure of the detector, and the simulated spectra agreed well with the measured ones. The mechanism underlying the difference in the low-energy region was discussed.