ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
S. E. Lee, Y. Hatano, M. Hara, M. Matsuyama
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 327-332
Technical Paper | doi.org/10.1080/15361055.2020.1711855
Articles are hosted by Taylor and Francis Online.
Nondestructive measurement of tritium (T) content in solid materials is important for safe and cost-effective disposal of contaminated wastes, and beta-ray induced X-ray spectrometry (BIXS) has been developed for this purpose. A common way to obtain depth profiles of T in solids using BIXS is to perform simulation of X-ray spectra for assumed depth profiles and find a profile giving the best agreement with observation. A detailed understanding of attenuation of low-energy X-rays (≤18.6 keV) by detector components such as a window material is required for interpretation of measured spectra and simulation. In this study, BIXS spectra of a tungsten reference sample with known T depth profile were measured using two different semiconductor detectors and simulated using the Monte Carlo simulation toolkit Geant4. In the low-energy region (<2 keV), the difference in internal structure resulted in a noticeable difference in the BIXS spectra. The disagreement between the measured and the simulated spectra was also significant at <2 keV. Nevertheless, at >2 keV, the BIXS spectra were insensitive to the internal structure of the detector, and the simulated spectra agreed well with the measured ones. The mechanism underlying the difference in the low-energy region was discussed.