ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
George Ana, Anisia Bornea, Ciprian Bucur, Alina Niculescu, Felicia Vasut, Ovidiu Balteanu, Marius Zamfirache
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 321-326
Technical Paper | doi.org/10.1080/15361055.2020.1711854
Articles are hosted by Taylor and Francis Online.
Whether they are based on fusion (JET, ITER, DEMO) or fission (e.g., CANDU type) or are cooled using molted salts [molten salt reactors (MSRs)], nuclear reactors generate significant amounts of waste in the form of low-level tritiated light water or heavy water, which generates risks for the environment and radiological risks for operating personnel. Given the wide range of tritium concentrations of tritiated water waste, processing it efficiently is possible only if the process is based on the combined process of liquid phase catalitic exchange and electrolysis of water. During this process, tritium is concentrated as tritiated water, which reduces the amount of waste and concentrates the water at the isotopic level high enough for further processing in view of tritium recovery, employing isotopic transfer in gas form. This paper reports on the modification of an industrial hydrogen generator in view of tritium compatibility to be used for further processing of tritiated (heavy) water for tritium recovery. Additionally, analysis will be made, and results will be presented on what will be the tritium/deuterium concentration profile in the generator and what influence the water holdup will have on the isotope concentration.