ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
IAEA program uses radioisotopes to protect rhinos
After two years of testing, the International Atomic Energy Agency and the University of the Witwatersrand in Johannesburg, South Africa, have begun officially implementing the Rhisotope Project, an innovative effort to combat rhino poaching and trafficking by leveraging nuclear technology.
Akira Taguchi, Takumi Nakamori, Yuki Yoneyama, Takahiko Sugiyama, Masahiro Tanaka, Kenji Kotoh, Yu Tachibana, Tatsuya Suzuki
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 314-320
Technical Paper | doi.org/10.1080/15361055.2020.1711853
Articles are hosted by Taylor and Francis Online.
Using either single H2 and D2 or H2-D2 mixed gases, the sorption abilities of CHA (chabazite)-type zeolites ion-exchanged with K, Na, or Ca were studied at 77, 201, and 250 K. The LTA (Linde Type A) (3A) and FAU (faujasite)-type zeolites were also examined for comparison. The pore diameters in these materials were found to decrease on the order of FAU > Ca-CHA > [K-CHA, Na-CHA, and LTA(3A)]. The quantities of D2 adsorbed on these zeolites were larger than the amounts of H2. At higher temperatures, the CHA-type zeolites having smaller pores exhibited superior D2/H2 selectivity compared with the LTA(3A) and FAU, suggesting that hydrogen isotope separation using zeolites is affected by pore size.