ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Sebastian Mirz, Tim Brunst, Robin Größle, Bennet Krasch
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 284-290
Technical Paper | doi.org/10.1080/15361055.2020.1711688
Articles are hosted by Taylor and Francis Online.
For the fuel cycles of fusion power plants, highly specialized in-line analytic systems are crucial for efficient process control, monitoring, and accountancy. One of these systems under development is infrared (IR) absorption spectroscopy of liquid hydrogen isotopologue mixtures that can be used for in-line process control and monitoring of cryogenic distillation. The main challenge of this method is the complex calibration procedure since the integral IR absorption strength is nonlinearly correlated with the isotopologue composition. Typical calibration procedures make use of well-known samples produced by mixing atomic pure samples and referenced by p-V-T-measurement. The samples are catalyzed to produce samples containing heteronuclear molecules. By this procedure, one cannot exceed the chemical equilibrium of high temperatures (mass action coefficient Kc<4). Therefore, it is not possible to produce samples with an HD, HT, or DT concentration above 50% by catalysis or natural equilibration. However, in isotope or isotopologue separation, such as in cryogenic distillation, this equilibrium will be regularly exceeded. In the case of IR absorption spectroscopy on liquid hydrogen isotopologues, additional care needs to be taken for calibration since the calibration functions are highly nonlinear. We tested our calibration in the high-purity HD regime (Kc>4) by producing a sample via cryogenic distillation and performing a cross calibration for three systems: Quadrupole mass spectrometry, Raman spectroscopy, and infrared spectroscopy. Therefore, we can also demonstrate that additional calibration points are indispensable in order to improve the systematic uncertainties below the 5% level, and a simple extrapolation from a calibration of Kc < 4 to Kc > 4 will result in a trueness and accuracy exceeding this 5% level.